Some Results on Coherent Rings

نویسنده

  • MORTON E. HARRIS
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On n-coherent rings, n-hereditary rings and n-regular rings

We observe some new characterizations of $n$-presented modules. Using the concepts of $(n,0)$-injectivity and $(n,0)$-flatness of modules, we also present some characterizations of right $n$-coherent rings, right $n$-hereditary rings, and right $n$-regular rings.

متن کامل

K–theory of Coherent Rings

We show that some basic results on the K–theory of noetherian rings can be extended to coherent rings.

متن کامل

On $z$-ideals of pointfree function rings

Let $L$ be a completely regular frame and $mathcal{R}L$ be the ‎ring of continuous real-valued functions on $L$‎. ‎We show that the‎ ‎lattice $Zid(mathcal{R}L)$ of $z$-ideals of $mathcal{R}L$ is a‎ ‎normal coherent Yosida frame‎, ‎which extends the corresponding $C(X)$‎ ‎result of Mart'{i}nez and Zenk‎. ‎This we do by exhibiting‎ ‎$Zid(mathcal{R}L)$ as a quotient of $Rad(mathcal{R}L)$‎, ‎the‎ ‎...

متن کامل

Gorenstein hereditary rings with respect to a semidualizing module

‎Let $C$ be a semidualizing module‎. ‎We first investigate the properties of‎ ‎finitely generated $G_C$-projective modules‎. ‎Then‎, ‎relative to $C$‎, ‎we introduce and study the rings over which‎ ‎every submodule of a projective (flat) module is $G_C$-projective (flat)‎, ‎which we call $C$-Gorenstein (semi)hereditary rings‎. ‎It is proved that every $C$-Gorenstein hereditary ring is both cohe...

متن کامل

Homological Characterizations of Rings with Property (P)

A commutative ring R is said to satisfy property (P) if every finitely generated proper ideal of R admits a non-zero annihilator. In this paper we give some necessary and sufficient conditions that a ring satisfies property (P). In particular, we characterize coherent rings, noetherian rings and P-coherent rings with property (P).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010